金融科技的四大代表性技术在风险管理场景下的应用深度有所差异,侧重领域也各有不同,且存在一些交叉。云计算技术为海量数据的运算能力和速度提升带来了突破;大数据风控技术主要应用于互联网金融的信用风险管理领域,解决的是信息不对称问题;人工智能风控技术是在大数据技术的基础上,主要解决风控模型优化的问题;区块链技术主要应用于支付清算等操作风险管理中的技术安全领域。
一、大数据技术在金融风险管理中的应用
大数据风控技术目前较多应用于P2P和网络小贷等互联网金融领域,针对的主要风险类型是以违约风险为主的信用风险。优点在于与传统风控手段相比数据来源更为广泛,识别速度更快且成本更低,从而有助于更好地解决信息不对称问题。缺点在于受制我国当前信用数据分散且质量不高的现状,一些风控模型过度依赖互联网和手机抓取数据进行分析,而对借款人财务状况和偿债能力等关键变量分析不足,这可能是“现金贷新规”中有针对性地指出要“谨慎使用数据风控模型”的主要原因。
1.运用大数据技术进行欺诈识别
进行欺诈申请的客户由于编造了全部或部分信息,很可能在自行申报的相关信息中存在不符合常理的情况,这些信息项可以成为欺诈识别模型的重要变量。
(1)基于地理位置信息的欺诈识别:将客户填写的地址信息定位为地址位置坐标,并与客户常用物流地址位置坐标进行比对,如果发现客户提供了一个距离过大的地址,则该地址信息存在虚假的可能性。针对移动端渠道,可以定位互联网客户的具体申请位置,与申请信息中填写的地址信息或职业信息进行对比验证。
(2)基于申请信息填报行为的欺诈识别:通过收集分析客户填写申请过程的行为信息,如填写了多长时间、修改了几次、修改了哪些内容等进行识别。
(3)基于客户填报信息与公司存量信息交叉比对的欺诈识别:多个申请件填报的单位电话相同,而对应的单位名称及地址不同,则批量伪冒申请件的可能性就很高。
(4)基于外部信息的交叉对比的欺诈识别:恶意申请会隐瞒对其不利的事实,如负债、运营存在问题、法院执行信息等,而抓取互联网上申请人的企业经营信息、法院执行信息可以核实申请人的真实资质。
2.运用大数据技术进行授信评分
被排除欺诈可能并进入评分规则引擎的客户,会按类型被分发到不同的细分模块,以适应不同的细分模型,包括不同的产品、不同的行业、不同的客户群,如车贷、消费贷、抵押贷、个人经营贷等。不同类型的借款申请调用不同的信用评分规则引擎,该引擎将并根据用户授权许可自动抓取的数据,通过特定模型转化为个人授信评分数据与商户授信评分数据。
(1)基于个人信息抓取的授信评分:抓取用户在互联网上的购买数据、搜索引擎数据、社交数据、账单邮箱信息等多个维度的数据,得到用户性格、消费偏好、意愿、学历等个人信息。
(2)基于商户信息抓取的授信评分:抓取商户的交易数据(物流、现金流、信息流数据)和电商的经营数据(如访客量、交易量、用户评价、物流信息等)来对商户进行授信评分。
3.运用大数据技术进行贷后管理
针对“还款意愿差”和“还款能力不足”两大客户逾期的主要原因,大数据技术通过违约信息排查和监测预警及时跟踪违约风险。
(1)违约信息排查:通过实时监测存量客户早期逾期、连续多期不还欠款、联系方式失效等情况,并将存量客户与新增的黑名单、灰名单数据匹配,及时发现潜在违约客户。
(2)小微商户流水监测预警:利用从数据合作方获取的商户交易流水信息,对其交易流水进行监测预警。突然出现的资金流入、流出,不符合经营规则的交易流水下滑情况,正常营业的大额交易等均可以触发预警。
(3)负面信息监测预警:通过大数据实时监测,一旦发现客户的负面信息、公安违法信息、法院执行信息、税务缴税信息、行业重要新闻、借款人社交关系网中的负面情况、借款人的网络浏览行为、资金支付结算情况等,及时触发预警。
二、人工智能在金融风险管理中的应用
与互联网领域相比,金融场景上数据具有两大独特性:一方面可用数据比互联网要少,另一方面又比传统评分卡体系多了很多不可解释、高维稀疏的大数据。机器学习要解决的问题主要是模型构建和训练、性能监控与自迭代的机制,包括深度学习、半监督学习、在线学习等技术,核心都是为了将互联网级别的机器学习技术“降维”应用到金融领域。目前人工智能和大数据技术的紧密结合已成为风险管理的核心技术,其基本逻辑是通过在深度学习和数据挖掘中自我更新、自我调整和自我迭代,进而从更多维度的大数据中把握风险规律。
1.提取数据深层特征
在数据繁杂的大型风控场景中,运用基于深度学习的人工智能特征生成框架,对时序、文本、影像等互联网行为、非结构化数据深层特征加工提取,大大提升了模型效果。比如消费信贷风险管理通过知识图谱、自然语言处理、机器学习等人工智能技术,发现借款人、企业、行业等不同主体间的有效信息维度关联,深度挖掘企业集团、上下游合作商、竞争对手、管理人员信息等关键信息。
2.提高风控模型与数据的匹配度
不同数据需用合适的模型才能挖掘出最大价值。机器学习方法在互联网广告、搜索、推荐等应用是对不同类型的数据用不同的机器学习模型处理,金融场景中,采用复杂集成模型也可以处理上千维度的弱变量,精准地估计违约风险。
3.加快风控模型迭代速度
互联网每天都生成海量用户数据,搜索、推荐模型需要持续频繁地优化,自迭代频次比金融领域更快、更准确,通过机器学习可以解决模型人工迭代慢的问题。在金融风险管理中,通过对模型特征性能、借贷群体和业务反馈等多方面的监控,机器学习模型能有效地快速自迭代。
4.无监督机器学习反欺诈
欺诈风险量化也使用智能模型,比如无监督机器学习模型,基于可观察到的交易特征变量和案件数据,学习什么是好的,和坏的样本进行风险预测;在没有标签数据的情况下,交易、账户登录等场景应用无监督机器学习模型,通过分析欺诈和正常用户行为模式的异同,识别欺诈风险。
三、区块链技术在金融风险管理中的应用
目前区块链技术主要应用于操作风险管理中的身份验证、支付安全等领域,重点针对的是人工操作中验证困难带来的风险。
1.身份验证
当身份证件需要取消或者重新签发时,在跨国操作的情境下,金融机构需很长时间才知道该身份撤销了,区块链技术使,此类敏感信息的传递过程更加便捷和高效。身份验证系统利用区块链特有的智能合约,可有选择地显示身份信息,实现信息在相关者范围内局部共享,防止身份被盗和加强用户隐私保护。
2.票据业务风险管理
票据业务具备低频大额交易及存在人工操作风险的特点,基于区块链技术的数字票据具有独特的风险防控优势:一是能够有效防范票据市场风险,避免了纸票“一票多卖”、电票打款背书不同步等问题;二是可以大大降低监管的调阅成本,完全透明的数据管理体系提供了可信任的追溯途径。
3.保险公司道德风险防范
在保险受理阶段,区块链技术可以将不同公司之间的数据打通,相互参考,从而及时发现重复投保、历史理赔等信息,及时发现高风险用户。在理赔阶段,基于在区块链上记录了的客户所有投保信息,很快可以发现并骗保行为并及时采取措施。
十九大报告指出,创新是引领发展的第一动力。金融机构应积极拥抱和推动科技驱动型金融创新,完善服务体系,提升服务质量,实现自身的转型发展,迎接新业态的到来。
上海高金金融研究院金融科技师CGFT有一门实践课叫做《金融科技在各领域的应用》,请了前京东数科专家、数联铭品的副总裁、中国金融科技创新联盟副秘书长等业内专家介绍监管科技、银行科技、保险科技、证券科技的应用。在这些机构中,金融科技主要应用于金融科技部(科技部或叫技术部)、互金部、产品部、风控部等多个部门,帮助学员全面了解前沿技术在金融机构风险管理中的应用实践,分析和理解金融科技如何落地于风险管理工作的方法论。
; span style="; font-syze: 18px; >ofont-font-family: CGFT has a practical course called "Application of Financial Science and Technology in Various Areas"; former Japanese digital experts, Deputy Managing Director of Fyms, Deputy Secretary-General of the China Coalition for Financial Science and Technology Innovation, etc.
特许全球金融科技师详细介绍
特许全球金融科技师CGFT英语全称为Chartered Global FinTech,通称CGFT。
特许全球金融科技师CGFT新项目已建立学术委员会、顾问委员会、项目管理办公室。依照CGFT学术委员会整体规划,“ “ 特许全球金融科技师CGFT”专业能力水平认证证书将 设置三个级别,CGFT一级六门课程内容涉及金融会计、金融学、大数据、人工智能、区块链、Python等 ,除此之外,还将增加金融科技应用模块课程内容,邀请行业权威专家在金融机构、保险科技、证劵科技等多行业,全方位塑造学员金融科技所需专业技能,助推金融科技从业者完成就业、转型、升职和发展。
二级、三级CGFT将引进国际性一流名牌大学或国际商学院,在课程内容产品研发、师资力量开展协作,将CGFT打造成一张符合国际需求,国际知名度的专业技能认证证书,对提升上海金融科技创新能级具有重要意义。
学员收获
1、学习金融科技相关的系统知识。
2、提升科技在金融场景中的应用能力。
3、掌握金融科技相关岗位的实践实操技能。
4、增强就业、转岗、晋升和发展的竞争力。
行业价值
1、缓解金融行业企事业单位紧缺的金融科技人才需求。
2、进一步助力金融企业数字化转型,提升核心竞争力。
3、赋能提供金融科技人才培养的培训机构、相关协会和院校等。
4、为国家新基建发展提供金融科技人才“原动力”,助推经济社会高质量发展。
我国正处于金融风险防范的关键时期,如果你在学习特许全球金融科技师的过程中学到了金融机构风险管理中的应用实践,能够帮助你进一步理解金融科技业务场景的落地。
> We are in a critical period of financial risk prevention, and if you learn about the application of risk management in financial institutions in the process of learning a licensed global financial technologist, it will help you to better understand the location of the financial science and technology business scene.
注册有任何问题请添加 微信:MVIP619 拉你进入群
打开微信扫一扫
添加客服
进入交流群
发表评论